Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 45(12): 9391-9409, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37184721

ABSTRACT

The resiliency of plastic products against microbial degradation in natural environment often creates devastating changes for humans, plants, and animals on the earth's surface. Biodegradation of plastics using indigenous bacteria may serve as a critical approach to overcome this resulting environmental stress. In the present work, a polyethylene degrading bacterium Alcaligenes faecalis strain ISJ128 (Accession No. MK968769) was isolated from partially degraded polyethylene film buried in the soil at plastic waste disposal site. The biodegradation studies were conducted by employing various methods such as hydrophobicity assessment of the strain ISJ128, measurement of viability and total protein content of bacterial biofilm attached to the polyethylene surface. The proliferation of bacterial cells on polyethylene film, as indicated by high growth response in terms of protein content (85.50 µg mL-1) and viability (1010 CFU mL-1), proposed reasonable suitability of our strain A. faecalis ISJ128 toward polyethylene degradation. The results of biodegradation assay revealed significant degradation (10.40%) of polyethylene film within a short period of time (i.e., 60 days), whereas no signs of degradation were seen in control PE film. A. faecalis strain ISJ128 also demonstrated a removal rate of 0.0018 day-1 along with half-life of 462 days. The scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy studies not only displayed changes on polyethylene surface but also altered level of intensity of functional groups and an increase in the carbonyl indexes justifying the degradation of polyethylene film due to bacterial activity. In addition, the secondary structure prediction (M fold software) of 16SrDNA proved the stable nature of the bacterial strain, thereby reflecting the profound scope of A. faecalis strain ISJ128 as a potential degrader for the eco-friendly disposal of polyethylene waste. Schematic representation of methodology.


Subject(s)
Alcaligenes faecalis , Polyethylene , Humans , Animals , Polyethylene/chemistry , Polyethylene/metabolism , Alcaligenes faecalis/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Biofilms
2.
Plants (Basel) ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365307

ABSTRACT

(1) Background: estragole is a monoterpene found in the essential oils of several aromatic plants, which can be used for several pharmacological activities. The aim of this study was to evaluate the antinociceptive effect of estragole (Es) and its ß-cyclodextrins inclusion complex (Es/ß-CD). (2) Methods: the effects of Es and Es/ß-CD on the central nervous system (CNS) were evaluated through open field and rota-rod assays, and the antinociceptive effect in formalin models, abdominal writhing induced by acetic acid, hot plate, tail flick test and plantar mechanical hyperalgesia. (3) Results: Es and Es/ß-CD showed no alterations on the CNS evaluated parameters and the results suggested there was an antinociceptive action in the formalin, abdominal writhing, hot plate, tail flick tests and plantar mechanical hyperalgesia, proposing the involvement of the nitric oxide, glutamatergic signaling pathways, cyclic guanosine monophosphate and vanilloid pathways. (4) Conclusion: the results suggest that Es and Es/ß-CD have a promising antinociceptive potential as a possible alternative for the pharmacological treatment of pain, also showing that the encapsulation of Es in ß-cyclodextrins probably improves its pharmacological properties, since the complexation process involves much lower amounts of the compound, contributing to better bioavailability and a lower probability of adverse effect development.

3.
Antibiotics (Basel) ; 11(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36289967

ABSTRACT

A worrisome fact is the increase in microbial resistance, which has as its main cause the indiscriminate use of antibiotics. Scientific studies have investigated bioactive compounds such as steroidal sapogenins, in the perspective of new beneficial alternatives for the control of bacterial resistance. Therefore, the objective of this work was to verify the antibacterial activity as well as the modifying action of antibiotics associated with solasodine and its ability to inhibit the efflux pump mechanism in strains of Staphylococcus aureus. Tests were performed to verify the minimum inhibitory concentration (MIC). In addition, the action-modifying potential of antibiotics and the inhibitory capacity of the efflux pump NorA and MepA through synergistic effects on the antibiotic and ethidium bromide were evaluated. Solasodine showed significant results for the standard bacteria with an MIC of 512 µg/mL, and when associated with the antibiotics gentamicin and nofloxacin for the multidrug-resistant bacteria S. aureus 10, Escherichia coli 06, and Pseudomonas aeruginosa 24, it showed a 50% reduction in MIC. The association of solasodine with the antibiotic ciprofloxacin against S. aureus K2068 (MepA) showed synergism, with a reduction in the MIC of the antibiotic from 64 µg/mL to 40 µg/mL, and also a reduction in the MIC when the antibiotic was used in conjunction with the efflux pump inhibitors. Solasodine may be acting on the mechanism of action of the antibiotic, as it has shown a potentiating effect when associated with antibiotics, inducing a reduction in the MIC against Gram-positive and Gram-negative bacteria. Therefore, this study demonstrated significant results for the potentiating action of solasodine when associated with antibiotics of clinical importance.

4.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36297389

ABSTRACT

Microbial resistance has become a worrying problem in recent decades after the abusive use of antibiotics causing the selection of resistant microorganisms. In order to circumvent such resistance, researchers have invested efforts in the search for promising natural substances, such as essential oils. Thus, the objective of this work was to determine the chemical composition of the essential oil of Acritopappus confertus leaves, to evaluate its intrinsic effect and its effects in combination with drugs against pathogenic fungi and bacteria, in addition to verifying the inhibition of virulence in Candida strains. To this end, the oil was verified by gas chromatography coupled with mass spectrometry (GC/MS). Candida strains were used for antifungal assays by means of the serial microdilution technique, in order to determine the average inhibitory concentration (IC50), and for the modification assays, sub-inhibitory concentrations (MIC/8) were used. Finally, the natural product's ability to inhibit the formation of filamentous structures was evaluated. In antibacterial tests, the MIC of the oil against strains of Staphylococcus aureus and Escherichia coli and its modifying effects in association with gentamicin, erythromycin, and norfloxacin were determined. The major constituent of the essential oil was the monoterpene myrcene (54.71%). The results show that the essential oil has an antifungal effect, with C. albicans strains being the most susceptible. Furthermore, the oil can potentiate the effect of fluconazole against strains of C. tropicalis and C. albicans. Regarding its effect on micromorphology, the oil was also able to inhibit the filaments in all strains. In combination with antibiotics, the oil potentiated the drug's action by reducing the MIC against E. coli and S. aureus. It can be concluded that the essential oil of A. confertus has potential against pathogenic fungi and bacteria, making it a target for the development of an antimicrobial drug.

5.
Molecules ; 27(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36144652

ABSTRACT

The inappropriate use of synthetic antibiotics has become a global public health problem. Therefore, the study of new alternatives for the treatment of infectious diseases is relevant and natural bioactive products are on the rise. This study conducted a scientific prospection of bioactive natural products with promising applications in the chemical control of microorganisms. A systematic review of the most recent articles was performed according to the following three steps: (i) eligibility assessment, (ii) screening, and (iii) inclusion of articles and information extraction. There has been an increase in the number of scientific publications on bioactive natural products for microbial control in the CAPES and SciELO databases (2001-2021). Seventeen relevant articles were included, most of which focused on extracts. Ascorbic acid, chlorogenic acid, chrysin, and quercetin were the most cited compounds. Natural products were shown to be effective in inhibiting more than 30 microorganisms. A discussion was presented on the research trends.


Subject(s)
Biological Products , Anti-Bacterial Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Chlorogenic Acid , Plant Extracts/chemistry , Quercetin
6.
Infect Genet Evol ; 84: 104370, 2020 10.
Article in English | MEDLINE | ID: mdl-32445918

ABSTRACT

Isolated substances and those organically synthesized have stood out over the years for their therapeutic properties, including their antibacterial activity. These compounds may be an alternative to the production of new antibiotics or may have the ability to potentiate the action of preexisting ones. In this context, the objective of this study was to evaluate the in vitro antibacterial and efflux pump inhibitory activity of hydroxyamines derived from lapachol and norlachol, more specifically the compounds 2-(2-Hydroxyethylamino)-3-(3-methyl-2-butenyl)-1,4 dihydro-1,4-naphthalenedione, 2-(2-Hydroxyethylamino)-3-(2-methyl-propenyl)[1,4]naphthoquinone and 2-(3-Hydroxypropylamino)-3-(3-methyl-2-butenyl)-[1,4]naphthoquinone, against Staphylococcus aureus strains carrying the NorA efflux pump mechanism. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol, obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. All three molecules underwent a virtual structure-based analysis (docking). The antibacterial activity of the substances was measured by determining their Minimum Inhibitory Concentration (MIC) and a microdilution assay was performed to verify efflux pump inhibition using the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis using an analysis of variance (ANOVA) followed by Bonferroni's post hoc test. The substances obtained MIC values ≥1024 µg/mL, however, a significant reduction of their MICs was observed when the substances were associated with norfloxacin and ethidium bromide, with this effect being attributed to efflux pump inhibition. Following a virtual analysis based on its structure (docking), information regarding the affinity of new ligands for the ABC efflux pump were observed, thus contributing to the understanding of their mechanism of molecular interactions and the discovery of functional ligands associated with a reduction in bacterial resistance.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Computer Simulation , Drug Evaluation, Preclinical , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/genetics , Naphthoquinones/chemistry , Norfloxacin/chemistry , Norfloxacin/pharmacology , Staphylococcus aureus/genetics
7.
Microb Pathog ; 144: 104181, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32277994

ABSTRACT

The aim of this research was to investigate the pharmacological properties of 2-(2-hydroxyethylamine)-3-(3-methyl-2-butenyl)-1,4-dihydro-1,4-naphthalenedione, 2-(2-hydroxy-ethylamine)-3-(2-methyl-propenyl)-[1,4]naphthoquinone and 2-(3-hydroxy-propylamine)-3-(3-methyl-2-butenyl)-[1,4]naphthoquinone using computational prediction models, in addition to evaluating the in vitro antibacterial and modulatory activity of these compounds against bacterial ATCC strains and clinical isolates. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, these then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. The antibacterial activity and modulatory activity of the substances were assayed by broth microdilution method to determine the Minimum Inhibitory Concentration (MIC). The molecular structures were analyzed using the ChEMBL database to predict possible pharmacological targets, which pointed to the molecule 2- (2-hydroxy-ethylamine)-3-(2-methyl-propenyl)-[1,4]naphthoquinone as a probable antibacterial agent for the proteins Replicative DNA helicase and RecA. The compounds had a low molecular weight and a small number of rotatable bonds. The MICs of the substances were not clinically significant, however, the association with gentamicin and amikacin reduced the MICs of these antibiotics. In conclusion, the combination of these substances with aminoglycosides may be a therapeutic alternative to bacterial resistance and the reduction of side effects.


Subject(s)
Anti-Bacterial Agents/pharmacology , Naphthoquinones/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacteria/metabolism , Computer Simulation , DNA Helicases/metabolism , Microbial Sensitivity Tests , Models, Molecular , Naphthoquinones/chemistry , Rec A Recombinases/metabolism
8.
Drug Des Devel Ther ; 9: 3067-72, 2015.
Article in English | MEDLINE | ID: mdl-26109849

ABSTRACT

BACKGROUND: The search for new active compounds from the Brazilian flora has intensified in recent years, especially for new drugs with antibiotic potential. Accordingly, the aim of this study was to determine whether riachin has antibiotic activity in itself or is able to modulate the activity of conventional antibiotics. METHODS: A non-cyanogenic cyanoglycoside known as riachin was isolated from Bauhinia pentandra, and was tested alone and in combination with three antibiotics (clindamycin, amikacin, and gentamicin) against multiresistant bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). RESULTS: Riachin did not show significant antibiotic activity when tested alone against any strain (P>0.05). However, when combined with conventional antibiotics, it showed drug-modifying activity against strains of S. aureus exposed to clindamycin (P<0.001) as well as against P. aeruginosa exposed to amikacin (P<0.001). Although riachin did not show direct antibiotic activity, it had synergistic activity when combined with amikacin or clindamycin. The mechanism of action of this synergism is under investigation. CONCLUSION: The results of this work demonstrate that some substances of natural origin can enhance the effectiveness of certain antibiotics, which means a substantial reduction in the drug dose required and possibly in consequent adverse events for patients.


Subject(s)
Acrylonitrile/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Bauhinia/chemistry , Glucosides/pharmacology , Plant Extracts/pharmacology , Acrylonitrile/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Synergism , Escherichia coli/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...